Polymers Groups

Wouter Ellenbroek

TU Eindhoven

We research the physical foundations of novel (often bio-inspired) materials that respond to their environment in interesting or useful ways. Using and developing numerical methods such as molecular dynamics, as well as analytical tools based in statistical physics, we study the (two-way!) interplay between mechanical forces and structural properties of novel responsive materials.

Jasper van der Gucht

University of Wageningen

The Wageningen Soft Matter group works on a range of diverse topics, in which macromolecules generally play an important role. Specific topics include: foams, emulsion and ionic liquids; dense particle systems; biomimetic materials; molecular modelling; proteins and engineered protein polymers; self-assembly of micelles, membranes and vesicles; hydrogels. We aim at analysing soft materials from a physics point of view and manipulating them using chemical tools and expertise.

Liesbeth Janssen

TU Eindhoven

We are interested in soft matter systems that are inherently out of thermodynamic equilibrium, ranging from non-crystalline polymers and glasses to active and living matter. We employ a combination of statistical-mechanical theory, analytical modeling, and computer simulations to study the structural, dynamical, and mechanical response properties of such materials. The aim is two-fold: firstly, we seek to gain new fundamental insight into the physics of soft and living matter, focusing mainly on the relation between microstructure and emergent dynamics; secondly, we aim to develop new theoretical tools that will ultimately allow us to rationally design, control, and optimize functional materials with adaptive, life-like, and "smart" properties.

Daniela Kraft

University of Leiden

The soft condensed matter group of Daniela Kraft is interested in the physics and self-organization of soft matter systems. Topics include the rational design of anisotropic and patchy particles for use as model systems and self-assembly, particle-covered emulsions and virus particles.

Alexey V. Lyulin

TU Eindhoven

The research in our group deals with the multiscale modelling of soft matter, focusing on macromolecules, in close connection with experiment and industry. Our main interests include classical computer simulations of both synthetic and bio-inspired polymers and polymer nanocomposites in solution, melt and in a glassy state, by molecular dynamics, Monte Carlo and Brownian dynamics methods. The major emphasis is always on atomic-scale properties of polymer interfaces and their connection to the macroscopic performance; nowadays the attention is shifting toward novel energy-related applications.

Peter Schall

University of Amsterdam

We investigate soft condensed matter at the micron scale - crystallization and phase separations, solid and liquid-like behavior, elastic and plastic properties. Using three-dimensional microscopic imaging and light scattering we bridge length scales from the particle scale to macroscopic lengths, thereby linking the microscopic behavior of these materials to their macroscopic properties.

Paul van der Schoot

TU Eindhoven

We apply statistical mechanics to problems in liquid crystals, colloids, supramolecular polymers, viruses and geometric percolation. The toolbox we make use of ranges from analytical methods to Brownian and molecular dynamics simulations. In the past focus was on static properties and phase behaviour in soft matter systems but our attention is shifting toward dynamics.

Joris Sprakel

University of Wageningen

We study and develop new responsive colloidal and polymeric systems. A major aim is to identify the mechanisms for catastrophic macroscopic phenomena such as fracture, melting and phase inversion at which microscopic structures, stresses and thermal fluctuations all become of significance. We also work on manipulating this interplay at the microscopic level to create new materials with enhanced functionality.

Kees Storm

TU Eindhoven

We are a theory group, focused on predictive modeling of the mechanical properties of soft, mostly biological, materials: Biopolymers, lipid bilayer membranes, biological and biomimetic network materials. We use analytical theory, Monte Carlo and MD simulations to better understand the relation between microscopic properties, spatial organization and, ultimately, macroscopic response.

Remco Tuinier

TU Eindhoven

In the Laboratory of Physical Chemistry we study the i) self-organization of colloids and polymers, ii) phase behaviour (and dynamics) of colloidal and colloid-polymer mixtures and iii) polymers & colloids at surfaces. For theme i applications involve the controlled encapsulation of compounds that need protection and/or need to be released at a desired rate. Topic ii aims at gaining a better understanding of the phase stability and dynamics in complex mixtures of colloids and polymers and bringing the knowledge towards mixtures in which the particles have realistic interactions (such as charges, soft repulsions). Applications involve understanding phase stability of complex mixtures such as food and (drying) paint. Theme iii involves the development of advanced (modified) surfaces for anti-(bio)fouling, controlled absorption/release and specific (bio)adhesion using tuned chemistry and topography as well as modifying surfaces to understand wettability, swelling, oil/water interaction(s).

Hans Wyss

TU Eindhoven

We use and develop experimental tools to study the structure, dynamics and rheology of soft materials, thereby revealing the physical mechanisms that govern their behavior. Current topics include the mechanics of cells and soft microgel particle systems, the use of microfluidics to control and study soft matter, colloids with anisotropic interactions, and the development of new mechanical probes.